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Abstract 

We present a unifying description of the graded SL(p, q) Kp-KdV hierarchies, including the Wronskian construction of 
their &mctions as well as the coefficients of the pertinent Lax operators, obtained via successive applications of special 
Darboux-Bkklund transformations. The emerging Darboux-Blcklund structure is identified as a constrained generalized 
Toda lattice system relevant for the two-matrix string model. It allows simple derivation of the n-soliton solutions of the 
unconstrained KP system. Also, the exact Wronskian solution for the two-matrix model partition function is found. 

1. Introduction 

The Kadomtsev-Petviashvili (KP) hierarchy of integrable soliton nonlinear evolution equations [ 1 ] is among 
the most important physically relevant integrable systems. One of the main reasons for the interest in the KP 
hierarchy in the last few years originates from its deep connection with the statistical-mechanical models of 
random matrices ((multi-)matrix models) providing nonperturbative discretized formulation of string theory 
[ 21. Most of the studies in the latter area follow the ideas of the original papers [ 33, where the integrability 
structures arise only after taking the continuum double-scaling limit. There exists, however, an alternative 
efficient approach [4] for extracting continuum differential integrable hierarchies from multi-matrix string 
models even before taking the continuum limit. More precisely, it is various reductions of the full KP hierarchy 
(constmined KP hierarchies) which play the major r6le in the latter context. 

1 Work supported in part by the US Department of Energy under contract DE-FW2-84ER40173. E-mail: aratyn@uic.edu. 
* Supported in part by Bulgarian NSF grant Pb-401. 
3 E-mail: emil@bgeam.bitnet, emil@bgumail.bgu.ac.il. 
4&nail: svetlana@bgeam.bitnet, svetlana@bgumail.bgu.ac.il. 

0375-9601/95/$XJSO @ 1995 Elsevier Science B.V. All rights reserved 
SSDIO375-9601(95)00295-2 



294 H. Aratyn et al. /Physics Letters A 201 (1995) 293-305 

On the other hand, constrained KP hierarchies arise also naturally in a purely solitonic context as shown 
below in Section 6.2 (see also Ref. [ 51 and references therein). 

It is the aim of the present note to study various properties and provide exact solutions for a specific class of 
constrained KP hierarchies - the graded SL(p, q) KP-KdV hierarchies, which are intimately related with the 
two-matrix string model (which is the most physically relevant one). The following main results are contained 
in the sequel: 

(i) We establish the equivalence between conventional “symmetry’‘-constrained KP hierarchies [5] and 
multi-boson reductions of the full KP hierarchy [ 6,7], also known as graded SL(p, q)-type KP-KdV hierarchies 
[ 8,9], which appear in two-matrix models of string theory [4]. In particular, we provide the explicit Miura 
map relating the above hierarchies. 

(ii) Explicit exact solutions are found for SL(p, q) KP-KdV integrable systems, including eigenfunctions 
and r-functions, via special Darboux-Bgicklund (DB) transformations. 

(iii) We establish the equivalence between the set of successive DB transformations on the SL(p, 1) KP- 
KdV system and the equations of motion of a constrained generalized Toda lattice model, which embodies the 
integrability structure of two-matrix string models. 

(iv) As a byproduct of (iii) we obtain the exact solution for this constrained Toda lattice system under specific 
initial conditions, relevant in the context of the two-matrix string model, and derive the exact expression for 
the partition function of the latter. 

(v) The present DB formalism provides a simple systematic wav to obtain the n-soliton solutions for the 
full (uncon&ined) KP system. - 

2. Background on generalized KP-KdV hierarchies and Darboux-Biicklund transformations 

2.1. Constrained KP hierarchies 

We shall consider the general class of constrained KP Lax operators with higher purely-differential part [ 51, 
also known as N-generalized two-boson KP Lax operators [ lo] 5, 

L=L++~giD-‘~i~D’+~u,D’+~ni(D-bi)-’, 
i=l I=0 i=l 

(1) 

r-2 

L+ = D’ -I- xu,D’, @i=aiexp 
(1 > 

bi , Pi = exp - bi . I=0 (J> (2) 

One can also define an alternative consistent Poisson reduction of the standard KP hierarchy based on the 
pseudo-differential Lax operators of the form [4,6,7], 

LN=L++~Ti~D-‘qt=L++~A(N’~(D-B!N’)-l, 
i=l k=i i=l W 

(3) 

ri=Aiexp (J > Bi , qN = eXp - BN , (J) qj = exp (JCBj -Bj+I)), 
j=l ,...,N- 1, (4) 

5 In order to avoid confusion, D will denote the differential operator in the sense of pseudo-differential calculus, whereas the derivative 
of a function will be denoted as axf. 
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which we will call multi-boson reduction of the full KR Lax operator. The above multi-boson reductions of the 
full KP Lax operators (3) define the generalized graded SL( r + N, N) KR-KdV hierarchies pertinent to the 
string two-matrix models (cf. Refs. [ 9,111) . 

In Ref. [ lo] these two formulations of the constrained KP hierarchy have been related via successive 
DB similarity transformations. Below in Section 3 we will establish their complete equivalence showing how 
the pseudo-differential Lax operators ( 1) and (3) can be rewritten into each other via a generalized Miura 
transformation. Due to this result we can limit ourselves to study DB transformations within the framework of 
the constrained KP hierarchy defined by N-generalized two-boson KP Lax operators as in ( 1) . 

2.2. On the DB transfomtions of the N-generalized two-boson KP L.ax operators 

The general form of a DB transformation on the N-generalized two-boson KP Lax operator ( 1) reads [ 12,131 

N 
Z = xDx-’ L+ + C@iD-‘!Pi xD-‘x-’ E Z+. + Z-9 

i=l > 
(5) 

i?+ = L+ + x[~~(x-~L+x)~,D-'Ix-~, (6) 

Z_ = &D-‘@o + 5 $iD-‘Gi, (7) 
i=l 

$0 =X > = Wx-‘L)x, 
i=l 

(8) 

i& =x-l, Zi = X8,( X-‘@i) 9 !Fi = -X-‘d~’ (!?iX) 9 

where all functions involved are (adjoint) eigenfunctions of L (l), i.e., they satisfy 

(9) 

$ f = L”!‘f, f =X9 @i* $pi = qJrpi. 
n n 

(10) 

Let us particularly stress that the above eigenfunctions are not Baker-Akhiezer eigenfunctions of L from ( 1) , 
unlike the construction in Ref. [ 121. 

We are interested in the special case when x coincides with one of the original eigenfunctions of L, e.g. 
x=@r.Then@r = 0 and the DB transformation (5) preserves the N-generalized two-boson form ( 1) of the Lax 
operators involved, i.e., it becomes an auto-Backlund transformation. Applying successive DB transformations 
in this case yields 

N 

L(k) = T(k-l)L(k-1)(T(k-l))-l = (L(b)+ + ~@,~‘)D-l@), T’k’ E @;k’D(@;k’)-‘, 

i=l 

q+u = (~‘k’L’k’)@;k), qq+u = (@;@)-I, k=O,l,... ) 

&+I) = pQjy E @p,[ (fp)-‘p], 
I 

&k+‘) = -(~lk))-la,-‘(Wi’k’~Ik’), 
1 i= ,..., 2 N. 

Using the first identity (ll), i.e., Lck+l)Tck) = Tck)Ltk), one can rewrite (12) in the form 

(11) 

(12) 

(13) 

(14) 

@(k) - T(k-l)T(k-z) 
1 - . . . T’O’ [ ( L(O)) &@;a) ] 

9 (15) 
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&) = T(k-‘)7+-2) 
t . . . T’c)@j”’ 

t ’ i= ,..., 2 N. (16) 

Finally, for the coefficient of the next-to-leading differential term in ( 1) ~~-2 = r Res L’l’ = rb’,’ In r, we easily 
obtain from (6) (with x = @I ) its k-step DB-transformed expression, 

(17) 

2.3. Wronskian preliminaries 

Firstly we list three basic properties of Wronskian determinants. 
(i) The derivative 2)’ of a determinant D of order n, whose entries are differentiable functions, can be written 

as 

0 = D(l) + D(2) f . . . + D(n), 

where ‘D(i) is obtained from D by differentiating the entries in the ith row. 
(ii) Jacobi expansion theorem. 

(18) 

Wk(f)Wk-1 =WkW~_l(f) -W$k--l(f), or 
d( ,,,I) = wk(f)$k-‘, 

(19) 

where the Wronskians are Wk s Wk[$t,...,&] and Wk-t(f) E wk[+t,...,&-r,f]. For proof see Ref. 
[ 141. Take a special class of Wronskians W, E W,, [ q%, 1+4’, . . . , iY”-‘11/]. Hence, from ( 19) we get 

WnWL - WiWA = W,W~_,(d”+) - WLW,_,(a”@) = W,_lW,+, ---f a21nW, = 
Wn+lWn-1 

wz . (20) 
” 

(iii) Iterative composition of Wronskians. 

wk(f) ?--if-.-.-l...Tl(f)=- 
wk ’ 

(21) 

where 

Ti 
w. wj-, 

=-L-D-= 

Wj_1 Wj 
Wc=l. (22) 

The proof of (21) follows by simple iteration of ( 19) (see also the standard references on this subject 
[ 14-161) . For future use let us rewrite (21) as 

wk(f) (D+Uk)(D+Uk-l)...(D+Ul)f = w,, (23) 

2.4. DB solutions of two-hose KP system and connection with ordinary To& lattice 

The two&son KP system defined by the Lax operator L = D + @D-‘Y =_ D + a(D - b)-’ is the most 
basic constrained KP structure. We start with the initial “free” Lax operator L(O) = D and perform a DB 
transformation, 

L(‘) = (@(“)D@ Cc)-‘)D(,&a)D- Q 1 to)-‘) = D + [~(0)(ln~(O))“]D-‘(~(O))-‘. 

The construction below is a special application of property (iii) and Eq. (21). 

(24) 
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In the case under consideration the relevant formulas for successive DB transformations ( 12)) ( 11) specialize 
to 

L(k+” = (&)D@ (~)-‘)L(&)(~(k,D-‘~(k)-‘) = D +&+‘)D-‘++‘) (25) 

@(k+‘) = &)(l,@(q” + (&))29(Q, @k+‘) = (&))-‘, (26) 

whereas Eq. ( 15) acquires the form (proved easily by induction in k) 

g,(k) = wk+l [a, @, . . . , dk@l 
w,[@,8@,...,ak-‘@I’ 

with @ = G(O). 

Introduce now 

~k=ln~(k),~(k)=eXp(~k), k=o,... , 

which allows us to rewrite (26) as a (ordinary one-dimensional) Toda lattice equation 

a24k = exp(4k+l - 4k) - exp(+k - #k-l 1. 

Introduce now new objects I,$, as follows, 

(27) 

(28) 

(29) 

A = $h/n+l -& --+& =lnW,[@,J@ ,..., a”-‘@]. 

From Eq. (20) we find immediately an equation for +k,, , 

(30) 

J2d = a2 In W, = exp(&+l + &-I - Wn 1, (31) 

with @,, = 0 for n 6 0. We recognize in the right-hand side of (31) a structure of the Cartan matrix for A,,. 
Leznov considered such an equation with Wronskian solution (in two dimensions) in Ref. [ 171. 

Hence, the solutions of the (ordinary one-dimensional) Toda lattice equations, with boundary conditions 

(I/n = 0 for n 6 0, reproduce the DB solutions of ordinary two-boson KP hierarchy (27) upon taking into 
account that @ = G(O) = exp( 40 ) = exp( $’ ) . 

3. Equivalence between N-generalized two-boson and 2N-boson KP hierarchies 

First, let us consider the simplest nontrivial case N = 2 in ( 1) . Applying the simple identity 

+D-'9 = #~t,b(,y-'D-lx) - 40-l (x-‘D-‘x) 

= #+( ,y-’ D-lx) - c$ w$;;’ :;;I D-' w$$l) (~-lD-~x), (32) 

for arbitrary functions #, f,6, x, where in the second equality Wronskian identity (21) was used, we obtain 

L = L+ +@‘D-“I’, +@2D-1!?‘2 = L+ +Ap’(D - Bf))-’ + AI*‘(D - Bi2))-l(D - Bi2))-‘, (33) 

Ai2’ = @PIP’ + @2P& (2) 
B2 = -a,ln!P2, (34) 

,401 = _@, W[q2rq11 B!2) = -a, In 
W[1u2,~11 

1 
wp21 ’ wp21 * 

(35) 
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Using successively the same type of identity as (32), together with (21) , e.g., for arbitrary functions 4, $, x, w, 

qjD-'t,b = q51,G(x-‘D-‘x) - q5w$;$’ ( w;F;I D-’ w$;‘t’ 
> 

(x-‘D-lx) 

+~wx4Jdbl wx, @I 
wx9 WI ( 

wax, w, +l D-’ w$;‘) (;;;l D-’ w$;;l) (x--ID-‘x1 3 (36) 

we can prove by induction in N that the N-generalized two-boson KP Lax operator can be transformed into 
the 2N-boson KP Lax operator, 

r-2 

L=D’+Cu,D’+~~iD-l~i~L,+~ai(D-b,)-l (37) 
I=0 i=l i=l 

=L++&N’(D-B,‘“‘)-l(D-B:;N:)-l...(D-B~?)-l (38) 
i=l 

upon the following change of variables, i.e., generalized Miura transformation, 

(39) 

(40) 

Let us now illustrate the equivalence between (37) and (38) in the inverse direction. To this end it is more 
convenient to use the (r, q) form of (3). Let us define the quantity 

Qk,i 3 (-l)‘-‘Jqi/qi-l /.../qk (dX’)i-k+‘, l<k<i<N. 

Then using D-‘Ql,i-,qi = D-‘Ql,iD - Ql,i we obtain from Eq. (3) 

N N 

h’=L+ +Cril’IID-‘qk+r,D-‘(-Q,,~_,qN), 
i=2 k=i 

(41) 

(42) 

where 

,I’) z 
1 ri + rlQl.i-19 i=2,...,N. (43) 

The above process can be continued to yield expression ( 1) with 

i-l i-k i-k i-k 

... c c Qk,i-si_k-1-1 Qi-St-k-1 ,i-si__t_-l-l . . * Qi--sz,i--sl-1 Qi-sl,i-1, 
k=l si_t-,=si_&z+l sz=s,+l s1=1 

l<i<N, (44) 

*N = qN, lui = (-l)N-‘q ,JqN-I/m.a/qi (dXf)N-i, l<i<N-1. (45) 
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4. Exact solutions of SL(p, q) KF’-KdV via DB transformations 
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With the Wronskian identities from Section 2.3, we can now represent the k-step DB transformation ( 15)- 

(17) in terms of Wronskian determinants involving only the coefficient functions of the “initiaI” Lax operator, 

r-2 

L(O) = D’ + c u;‘)D’ + 2 @f”D. 

l=o i=l 

Indeed, using identity (21) and defining 

(p)kp E X’k’, k= 1,2,... 

we arrive at the following general result: 

Proposition. The k-step DB-transformed eigenfunctions and the r-function ( 15)-( 17) of the SL(r + N, N) 
KR-KdV system (37) for arbitrary initial J?(O) (46) are given by 

@(k) _ wk+l [@;“)vk’(‘),. . .,,$k’l 
1 - w,[@i”‘, xc’), . . . , Xck-‘)] ’ 

&) = wk+l [@;“> x(I), . . . , ,$k-‘),@jo) 1 
J wk[@;“),,$l), . . .,,$k-‘)] ’ 

j=2,...,N, 

(48) 

(49) 

T(k) = Wk[~~o),X(‘),...,X(k-‘)]7(0), 

where r(O), rCk) are the r-functions of L(O), LCk), respectively, and xci) is given by (47). 

As an example let us consider the SL( 3,l) KP-KdV Lax operator, i.e., r = 2, N = 1 in ( 1) (the latter is 
pertinent to the simplest nontrivial string two-matrix model [ 111) , 

L=D2+~+A(D-B)-‘=D2+~+@D-1P. (51) 

From the basic formulas for the successive DB transformations ( 12)) ( 11) , applied to (5 1) , we have 

L’k’ = 02 + U(k) + @kfD-rg(kf 9 (52) 
,r_‘k’ + L(k+l) = +)LW(@Q)-l, T’k’ =~(k)D(&k))-l, 

uCk) = 2 Res L’i2 3 26’: In rCk) = 28: ln(GCk-i) . . . do)), 

(53) 

(54) 

@i*,~A’k’exp(/B(k)) =~(k-‘)[a,(~d:m’LI,+Za:ln(0(‘2)...a’~)))+~], (55) 

u(O) = 0, p(O) = 0, @CO) = I ~d~)exp[5(~L{~))l, t(A9 {t}) SE AX + C Aj.tj, (57) 
r _W 

where @co) in (57) is an arbitrary eigenfunction of the “free” L (‘) = D2 (the contour r in the complex A-plane 
is chosen such that the generalized Laplace transform of c(A) is well defined). 
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As a corollary from the above proposition, we get in the case of (52), 

7(k) = W[ @(O) , g@(o), . . . , @(k-l)@(o) 1. (59) 

Substituting (58), (59) into (54)-(56) we obtain the following explicit solutions for the coefficient functions 
of (51), 

u@) = 2J,2 In W[ G(O), 6$fJ”), . . . , a2cn-1Wo)], x (60) 

B(“) = 8, In ( 
W[@CO), &p(O), . . . , #(“4)@(O)] 

w]@(a),&(a), . . . , x &2,@(0, ] ’ 
> 

(61) 

(62) 

Similarly, in the more general case of the SL( r + I,1 ) KR-KdV Lax operator for arbitrary finite r, 

r-2 

L=D’+~ulD’+@D-‘ty, 
I=0 

(63) 

which defines the integrable hierarchy corresponding to the general string two-matrix model (cf. Refs. [ 9,111) , 
the generalizations of (58) and (59) read 

a(k) = TN-l) . . . ~‘O’(~~~~icO)) = w [ CD(O) ) p(O), . . . , ajwO) ] 
W[@CO), ~gm,. . . , (gk-l)3Jm] ’ 

.$&U 
r 

r_2 = Res L’l’ = 8: In rfu, r(k) = w[~‘a),~;~(a), . , . ,Qk-U~r@‘J’] , 

where @co) is again given explicitly by (57). 

(65) 

5. Relation to constrained generalized Toda lattices 

Here we shall establish the equivalence between the set of successive DB transformations of the SL(r+ 1,l) 
KP-KdV system (63), 

L(k+t) &k)L(k)(~(k))-1, T’k’ = @D@(k) -’ , 
(66) 

r-2 

L(O) = D’ + 
c 

uj”)D’ + @(o)D-$‘(o), (67) 
IdI 

and the equations of motion of a constrained generalized Toda lattice system, underlying the two-matrix string 
model, which contains, in particular, the two-dimensional Toda lattice equations. 

For simplicity we shall illustrate the above property on the simplest nontrivial case of SL(3,l) KP-KdV 
hierarchy (51). We note that Eqs. (54)-( 56) (or (60)-(62)) can be cast in the following recurrence form, 

~JnA’“-” = B(“) _ @“-I) (68) 
&0 _ &l-l) = 2d,B’“‘, (69) 
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A(“) _ A(“--1) = a,[(&@)2 + $tn, +&+l))], 

with the “initial” conditions (cf. (57)) 
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(70) 

A’@ = B’o’ = u(o) = 0, I?(‘) E c3,ln@, (71) 

where Q, is so far an arbitrary function. Now, we can view (68)-(70) as a system of lattice equations for the 
dynamical variables A(“), B(“), UC”) associated with each lattice site n and subject to the boundary conditions 

A’“’ = @“I = .(n) = 0, n < 0. (72) 

Taking (7 1) as initial data, one can solve the lattice system (68) -( 70) step by step (for n = 1,2,. . .) and the 
solution has precisely the form of ( 60) -( 62). 

The lattice system (68)-( 70) can be identified with the II EE x evolution equations of the constrained 
generalized Toda lattice hierarchy defined as follows [ 4,111, 

&? = IQ;+,d2L &a = [Q;+,dlv r= l,...,Pl, (73) 
I r 

-$Q = ~Q,PI, $8 = rrZ,@1, S= 1 ,..*vp2, (74) 
s s 

-gIQ,&l = I. (75) 

Here Q and 0 are semi-infinite matrices, i.e., with indices running from 0 to co, with the following explicit 
parametrization, 

Q nn = ao(n>, Qn,n+~ = 1, Qn,n-k = a&(n) 1 k=l r...rp2 - 1, 

Q = 0, 

L= bdn), 

for m-n>2, n-m>p2, (76) 

&,,,-I =R,, ~n,n+t=b~(n)R,-:,...R~~k, k= I,...,pl - 1, 

em = 0, for n-m>2, m-n >pl. (77) 

The subscripts -/+ in (73)) (74) denote lower/upper triangular parts, whereas (+) /( -) denote upper/lower 
triangular plus diagonal parts. In the case under consideration the number p2 = 3 in (76), whereas the number 
p1 in (77) is arbitrary finite or 00 6. 

Note the presence of the nonevolution constraint equation (75), which is called “string equation”. The lattice 
equations for the matrix elements uk(n) of Q (the first Eqs. (73) and (74)) can be solved explicitly as 
functionals of the matrix elements of 0, 

P2-1 

Q(-, = 1 cd& ffs E -(s+ l)i,+l. 
s=o g 

(78) 

Furthermore, it is more convenient to introduce another matrix & (with matrix elements i?,,,&(n), cf. (77)) 
in place of 0 defined as 

6 Both numbers pl,z indicating the number of nonzero diagonals, outside the main one, of the matrices Q and Q are related with the 
polynomial orders of the corresponding string two-matrix model potentials, whereas the constant g in (75) denotes the coupling parameter 
between the two random matrices. 
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with I+,,,,, = &+I,,,,, where the last equality follows from (78). More generally, we have the relations $[_) = 

‘& Y&~_, for any s = 1,. . . ,p2 with coefficients Ys,, simply expressed through CY, (78). Specifically we 
obtain 

iI n = YII&, $(n) = y11bo(n> + =, 
2Yll 

b,(n) = yf,b&l) + Jz!_ - pQ2, 
3Yll 2Yl1 

y11 = (cyp2-,)‘l(p2--l), y2i EE --?-- ffp2-2 

pi - 1 (ap2_-I)(~2-3)l(p2-1) ’ 

52-3 p2 - 4 ai2-2 
((ym_,)(~2-4)l(~~-~) - 2(p2 - 1) ((y,*_,)(*pz-W(p2-t) - 

Accordingly, the evolution equations (74) acquire the form 

(80) 

(81) 

(82) 

The remaining independent lattice equations then read (we write down explicitly only the t; E x and f2 
evolution equations for the p2 = 3 case), 

Jx ln fin+1 = $(n + 1) - $(n), h,(n) - &,(Fr - 1) = f?,$(n>, (83) 

fi,+,-8”=a,[~~(n)+61(n)+g,(,-l)l, (84) 

-$a.+, = W%&+l+2$(~)&+,), 
2 

(85) 

&ho(n) = &[2S* (n) + b&z) - a&n)], $81 (n) = &kn+l. (86) 
2 

Now, we observe that the system of Darboux-Backlund equations for SL(3,l) Kp-KdV hierarchy (68)-( 70) 
exactly coincides upon identification, 

B(“) = &(n - l), UCn) =2&n - l), A(“) = fin, (87) 

with the x E ii constrained Toda lattice evolution equations (83), (84). Also, the higher Toda lattice evolution 
parameters can be identified with the following subset of evolution parameters 
hierarchy (63) [ 11,9], 

; 
s 

N $CP-KdV 
s 1 s = 2,. . . ,p*, r r N rKr’-Kdv 

au-l) r=l ,...,p1, 

the second identification resulting from (79). 

of the SL(p2,l) KP-KdV 

(88) 

In particular, excluding &c(n) E B(“+l) and &t(n) E ;a(“+‘) in (70) using (83)-( 86), we obtain the 
two-dimensional Toda lattice equation for A(“) E k,,, 

axa;, In A(“) = A(“+l) _ 2A(“) + A(“-1). (89) 

6. Discussion and outlook 

6.1. Partition function of the two-matrix string model 

The partition function ZN of the two-matrix string model is simply expressed in terms of the 0 matrix element 
bi (N - 1) at the Toda lattice site N - 1, where N indicates the size (N x N) of the pertinent random matrices: 
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J:InZN = bt(N - 1) (cf. Refs. [4,11]). Thus, using (65) and (57) together with (88), and accounting for 
the relations ( 80)) (8 1) , we obtain the following exact solution at finite N for the two-matrix model partition 
function, 

+, (90) ZN = W[~,co),~~-l~(O),...,~~Pz-1)(~-l)~(O)] exp{~~[(~)‘-J$]) 

&(a, = 
J 

~c(h)exp[i(~,{i,I))l, &A,{i,t}) ?&“i,+~,P~-“t,, 

I s=l r=2 

(91) 

where x = it and the y-coefficients are defined in (81). The “density” function c(A) in (91) is determined 
from matching the expression for @ ^(O): &In&(*) =&c(O) =yttba(O) +y21/2yrr (cf. (71), (87), (80)), with 
the expression for ba(0) in the orthogonal-polynomial formalism [4], 

s 
I 

(92) 

Obviously, the most important question now is to study the physical double-scaling limit [ 31 of (90)) which 
amounts to a special fine-tuned limit N -+ 00. The latter presumably includes renormalizations and critical 
point approaching of the (tr, fs) parameters. 

6.2. Connection to Grassmannian manifolds and n-soliton solution for the KP hierarchy 

Let {@I, - 1 . , rlr, } be a basis of solutions of the nth order equation LIJ = 0, where L = (D +u,) (D +u,,._~ ) . . . 
x (D + ~1). If Wk denotes the Wronskian determinant of {(/II,. . . ,t,Qk} then one can show that [ 16,181 

ui=a InW’-’ , Wo=l. 
( > Wi 

(93) 

This allows to show that the space of differential operators is parametrized by the Grassmannian manifold (see 
e.g. Refs. [ 18,191) . Start namely with the given differential operator L,, = D”+ul D”-’ +. . . + un and determine 
the kernel of L, given by an n-dimensional subspace of some Hilbert space of functions ‘FI, spanned, let us say, 

by {@I 9. . . , &}. This establishes the connection one way. On the other hand let ($1,. . . , I++,,} be a basis of one 
point fi of Gr”” being a Grassmannian manifold. Define the differential equation as L,( n)f = Wk( f)/Wk. 
From (23) this associates the differential operator 

L,=D”+u,D”-‘+...fu,=(D+u,)(D+o,_,)...(D+u~), (94) 

given by a Miura correspondence to a given point of the Grassmannian. 
Recall now the correspondence (equivalence) between N-generalized two-boson KP and 2N-boson KP 

systems, Eqs. (37) -( 40). Relation (40) has the form like in (23) and, therefore 

{[(D-B~N’)-‘(D-B~~))-‘...(D~B~~N))-’]-’}tlYj=O, i<j<N. (95) 

The relations above generalize the relations encountered in the study of flags manifolds and clearly deserve 
further investigations. 
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Let us now comment on the connection to the n-soliton solution for the KP hierarchy. Assume that the above 
functions &, i = 1 , . . . , n, have the property &q%i = cV’& for arbitrary m 2 1 
$i are eigenfunctions of L(O) 

(8, z a/at,), in other words 
= D. We introduce L = L,DL;‘, where L, is defined in terms of {$I,. . . , &,} 

as in (93) and (94). It is known that such a Lax operator satisfies a generalized Lax equation J,,,L = [ Ly , L] 
[ 1,201. 

Using (21) we can rewrite the above Lax operator as a result of successive DB transformations applied to 
D, 

L = L,DL,’ = T,,T,_, . . . q DT;’ . . . Tn:l,Tn-‘, (96) 

where the Ti are given in terms of Wronskians as in (22). It follows that L can be cast in the form of the Lax 
operator belonging to the n-generalized two-boson KP hierarchy having the form as in ( 1) with r = 1, N = n. 
Using the formalism developed in this paper one can prove by induction that the corresponding r-function of L 
takes a Wronskian form rn = W, [ +I, . . . , $,,I reproducing the n-soliton solution to the KP equation derived in 
Ref. [21]. In fact, choosing $i = exp( C r&) + exp<c t&) allows one to rewrite r,, in the conventional 
form of the n-soliton solution to the KP equation [ 221. 

Acknowledgement 

E.N. and S.P. gratefully acknowledge support from the Ben-Gurion University, Beer-Sheva. Also, they extend 
their sincere gratitude to Professor K. Pohlmeyer for cordial hospitality at the University of Freiburg where a 
major part of this work was done. S.P thankfully appreciates financial support by the Deutscher Akademischer 
Austauschdienst for her visit at the University of Freiburg. 

Note added 

After completion of this paper we became aware of Ref. [23] where Wronskian expressions for partition 
functions of matrix models have been obtained by a different method. We would like to stress that our result 
(90)-( 92) explicitly incorporates the “string-equation” constraint (75) on the Toda lattice system. 
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